Reproducing Kernels, De Branges-rovnyak Spaces, and Norms of Weighted Composition Operators

نویسنده

  • MICHAEL T. JURY
چکیده

SPACES, AND NORMS OF WEIGHTED COMPOSITION OPERATORS MICHAEL T. JURY Abstract. We prove that the norm of a weighted composition operator on the Hardy space H2 of the disk is controlled by the norm of the weight function in the de Branges-Rovnyak space associated to the symbol of the composition operator. As a corollary we obtain a new proof of the boundedness of composition operators on H2, and recover the standard upper bound for the norm. Similar arguments apply to weighted Bergman spaces. We also show that the positivity of a generalized de Branges-Rovnyak kernel is su cient for the boundedness of a given composition operator on the standard functions spaces on the unit ball. IfH is a vector space of functions de ned on a setX, given a function b : X ! X one can de ne a composition operator Cb by (Cbf)(x) = f(b(x)). When H is the Hardy space H2(D), the Hilbert space of functions analytic in the open unit disk D equipped with the norm kfk2 = sup 0<r<1 1 2 Z 2 0 jf(rei )j2 d ; the composition operator Cb is bounded for every analytic map b : D! D, and kCbk 1 + jb(0)j 1 jb(0)j 1=2 : The standard proof of these facts appeals to the Littlewood subordination principle in harmonic analysis; see [4]. In this note we give a proof of the boundedness of Cb on H2 which does not use the Littlewood subordination principle, only reproducing kernel methods. The idea behind the proof is to express the boundedness of certain weighted composition operators TfCb in terms of the positivity of kernels related to b and H2, in particular the kernels of the de Branges-Rovnyak spaces. The boundedness of Cb is obtained as Date: September 19, 2006. 2000 Mathematics Subject Classi cation. 47B33 (primary), 47B32, 46E22 (secondary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Norm Inequalities for De Branges-rovnyak Spaces and Their Applications

Let H(b) denote the de Branges–Rovnyak space associated with a function b in the unit ball of H∞(C+). We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form ‖f ‖L2(μ) ≤ C‖f‖H(b), where f ∈ H(b) and μ is a Carleson-type measure on C+ ∪ R. We provide several applications of these inequalities. We apply them to obtain embedding theorem...

متن کامل

Schur-class Multipliers on the Fock Space: De Branges-rovnyak Reproducing Kernel Spaces and Transfer-function Realizations

We introduce and study a Fock-space noncommutative analogue of reproducing kernel Hilbert spaces of de Branges-Rovnyak type. Results include: use of the de Branges-Rovnyak space H(KS) as the state space for the unique (up to unitary equivalence) observable, coisometric transfer-function realization of the Schur-class multiplier S, realization-theoretic characterization of inner Schur-class mult...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Integral representation of the n-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel

— In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces H(b), where b is in the unit ball of H∞(C+). In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces Kb, where b is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums...

متن کامل

Schur-class Multipliers on the Arveson Space: De Branges-rovnyak Reproducing Kernel Spaces and Commutative Transfer-function Realizations

An interesting and recently much studied generalization of the classical Schur class is the class of contractive operator-valued multipliers S(λ) for the reproducing kernel Hilbert space H(kd) on the unit ball B d ⊂ C, where kd is the positive kernel kd(λ,ζ) = 1/(1 − 〈λ, ζ〉) on B . The reproducing kernel space H(KS) associated with the positive kernel KS(λ,ζ) = (I −S(λ)S(ζ)∗) · kd(λ,ζ) is a nat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006